a note on the zero divisor graph of a lattice

Authors

t. tamizh chelvam

s. nithya

abstract

abstract. let $l$ be a lattice with the least element $0$. an element $xin l$ is a zero divisor if $xwedge y=0$ for some $yin l^*=lsetminus left{0right}$. the set of all zero divisors is denoted by $z(l)$. we associate a simple graph $gamma(l)$ to $l$ with vertex set $z(l)^*=z(l)setminus left{0right}$, the set of non-zero zero divisors of $l$ and distinct $x,yin z(l)^*$ are adjacent if and only if $xwedge y=0$. in this paper, we obtain certain properties and diameter and girth of the zero divisor graph $gamma(l)$. also we find a dominating set and the domination number of the zero divisor graph $gamma(l)$

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

THE ZERO-DIVISOR GRAPH OF A MODULE

Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, sayΓ(RM), such that when M=R, Γ(RM) coincide with the zero-divisor graph of R. Many well-known results by D.F. Anderson and P.S. Livingston have been generalized for Γ(RM). We Will show that Γ(RM) is connected withdiam Γ(RM)≤ 3 and if Γ(RM) contains a cycle, then Γ(RM)≤4. We will also show tha...

full text

A Note on the Zero Divisor Graph of a Lattice T. Tamizh Chelvam∗ and S. Nithya

Let L be a lattice with the least element 0. An element x ∈ L is a zero divisor if x∧ y = 0 for some y ∈ L∗ = L \ {0}. The set of all zero divisors is denoted by Z(L). We associate a simple graph Γ(L) to L with vertex set Z(L)∗ = Z(L) \ {0}, the set of non-zero zero divisors of L and distinct x, y ∈ Z(L)∗ are adjacent if and only if x ∧ y = 0. In this paper, we obtain certain properties and dia...

full text

the zero-divisor graph of a module

let $r$ be a commutative ring with identity and $m$ an $r$-module. in this paper, we associate a graph to $m$, say ${gamma}({}_{r}m)$, such that when $m=r$, ${gamma}({}_{r}m)$ coincide with the zero-divisor graph of $r$. many well-known results by d.f. anderson and p.s. livingston have been generalized for ${gamma}({}_{r}m)$. we show that ${gamma}({}_{r}m)$ is connected with ${diam}({gamma}({}_...

full text

A Note on Zero Divisor Graph Over Rings

In this article we discuss the graphs of the sets of zero-divisors of a ring. Now let R be a ring. Let G be a graph with elements of R as vertices such that two non-zero elements a, b ∈ R are adjacent if ab = ba = 0. We examine such a graph and try to find out when such a graph is planar and when is it complete etc. Mathematics Subject Classification: Primary 16-xx, 05-xx; Secondary 05C50

full text

On the Zero-divisor Cayley Graph of a Finite Commutative Ring

Let R be a fnite commutative ring and N(R) be the set of non unit elements of R. The non unit graph of R, denoted by Gamma(R), is the graph obtained by setting all the elements of N(R) to be the vertices and defning distinct vertices x and y to be adjacent if and only if x - yin N(R). In this paper, the basic properties of Gamma(R) are investigated and some characterization results regarding co...

full text

Properties of extended ideal based zero divisor graph of a commutative ring

This paper deals with some results concerning the notion of extended ideal based zero divisor graph $overline Gamma_I(R)$ for an ideal $I$ of a commutative ring $R$ and characterize its bipartite graph. Also, we study the properties of an annihilator of $overline Gamma_I(R)$.

full text

My Resources

Save resource for easier access later


Journal title:
transactions on combinatorics

Publisher: university of isfahan

ISSN 2251-8657

volume 3

issue 3 2014

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023